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A B S T R A C T   

According to the World Health Organization and the Food and Agricultural Organization of the United Nations, 
T-2 is one of the most harmful food-toxic chemicals, penetrates intact skin. The current study examined the 
protective benefits of menthol topical treatment on T-2 toxin-induced cutaneous toxicity in mice. Lesions were 
observed on the skin of the T-2 toxin-treated groups at 72 and 120 h. The T-2 toxin (2.97 mg/kg/bw)-treated 
group developed skin lesions, skin inflammation, erythema, and necrosis of skin tissue in contrast to the control 
group. Our findings reveal that topical application of 0.25% and 0.5% MN treated groups resulted in no erythema 
or inflammation, and normal skin was observed with growing hairs. The 0.5% MN administered group 
demonstrated an 80% blister and erythema healing effect in in vitro tests. In addition, MN dose-dependently 
suppressed ROS and lipid peroxidation mediated by the T-2 toxin up to 120%. Histology discoveries and the 
immunoblotting investigations with the downregulation of i-NOS gene expression confirmed the validity of 
menthol activity. Further molecular docking experiments of menthol against the i-NOS protein demonstrated 
stable binding efficacy with conventional hydrogen bond interactions, indicating compelling evidence of men-
thol’s anti-inflammatory effects on the T-2 toxin-induced skin inflammation.   

1. Introduction 

The T-2 mycotoxin is readily absorbed by various routes, including 
oral, topical, and inhalational ones. Contrary to most typical biotoxins, 
which do not affect the skin, T-2 is a potent skin irritant that can be 
absorbed through Fusarium species (F. poae, F. sporotrichioides, and 
F. tricinctum) are the leading producer of the T-2 mycotoxin, a significant 
crop and silage contaminant. When stored in wet storage conditions and 
in the field, these can infect wheat, barley, and corn. Consumption of 
mycotoxin-contaminated cereal-based food and feed is risky for human 
and animal health (Kanora and Maes, 2010; Janik et al., 2019). The best 

conditions for boosting toxin production include relative humidity of 
70% or less, oxygen availability, and temperatures between 0 and 50 ◦C, 
depending on the type of fungus (Zhang et al., 2018). The T-2 mycotoxin 
is non-volatile, insoluble in water, and challenging to degrade despite 
having a molecular weight of only 466.51 Da. It also exhibits extraor-
dinary resistance to degradation under various environmental condi-
tions, including heat and ultraviolet light. The decontamination 
procedure nevertheless works well in highly acidic or alkaline condi-
tions, despite problems with toxin deactivation (Adhikari et al., 2017). 

Intact skin and causes systemic toxicity. As a skin irritant and blis-
tering agent, it is 400 times more potent than the chemical warfare agent 
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sulphur mustard (Mustard gas, Yperite) (Albarenque et al., 1999). In 
addition, the inhalational toxicity of the T-2 toxin is comparable to that 
of mustards or lewisite. Therefore, T-2 toxin features more closely 
mirror those of chemical agents than biological toxins. Rats, rabbits, 
guinea pigs, and cynomolgus monkeys have been utilized as experi-
mental animals in studies looking at the T-2 toxin’s cutaneous irritancy 
(Hemmati et al., 2012; Dai et al., 2022). Dermatoxic consequences in the 
context of chickens include lethal ulceration and necrotizing dermatitis. 
Several animals exhibit comb cyanosis and depigmented skin on their 
legs (Yang et al., 2021). The mouse model has shown that T-2-mycotoxin 
causes cutaneous damage and skin inflammation. 

In several studies that successfully investigated the role of medicinal 
plants in the healing of skin wounds, it was discovered that the extracts 
or their isolated compounds accelerated the healing process, decreased 
localized inflammation, and increased cellular antioxidant defence 
(de-Oliveira et al., 2020; Li et al., 2022). Plant-based treatments have 
been demonstrated to quicken wound healing while maintaining aes-
thetics (Shedoeva et al., 2019). Because of this, plants are utilized to 
make more than 70% of the medications used to treat wounds (Lordani 
et al., 2018). Menthol, a monocyclic monoterpene, is present in the 
essential oil of various species of the Mentha genus (Rozza et al., 2021). 
It is an agonist of the transient receptor potential melastatin-8 channels 
(TRPM8), which are cold receptors in the skin’s sensory nerves. As a 
result, menthol has a cooling effect when applied to the skin or mucous 
membranes (Silva et al., 2019). TRPM8 channel activation does not 
impact the speed of cutaneous wound healing (Nguyen et al., 2021). 
Menthol also has a bimodal action in activating TRPA1 and TRPV1 
channels (Koivisto et al., 2022). TRPV3 channel activation enhances skin 
wound healing, according to some research (Sahu and Goswami, 2023). 
Menthol is a typical component of cosmetics and drugs used to relieve 
pain and respiratory problems (Bastaki et al., 2018; Singh et al., 2015; 
Rachitha et al., 2023). Therefore, the present study aimed to examine 
the preventive efficacy of menthol against T-2 toxin-induced cutaneous 
toxicity because there is little information on treating T-2 toxin-induced 
dermal toxicity. 

2. Materials and methods 

2.1. Animals 

Committee No. 28/IAEC/CPCSEA and the Institute Animal Ethics 
Committee approved the permission to employ animals in the experi-
ment. The male Balb/c mice weighing 20–25 g was obtained from 
Defence Food Research Laboratory, Mysore, India. The mice were 
housed in acrylic fibre cages at (25 ± 2 ◦C) with a 12-h light/dark cycle 
and given a commercial pellet diet (India’s Sri Venkateswara Enter-
prises, Bangalore) and an endless supply of water. 

2.2. Menthol cream development for skin wound treatment 

Merck supplied (− )-menthol (99% purity), which was blended with 
eucerine cream at concentrations of 0.25% (MN 0.25%) and 0.5% (MN 
0.5%). Eucerine cream alone used as negative control. 

2.3. Experimental design 

The design and observation of the animal studies have adhered to the 
standard protocol (Agrawal et al., 2012; Hemmati et al., 2012). In the 
investigation, six mice from each of the following groups were used: No 
toxin was given to Group 1 that served as the control group; T-2 toxin 
was given to group 2 (2.97 mg/kg bwt), group 3 (2.97 mg/kg bwt) with 
eucerin base, group 4 T-2 (2.97 mg/kg bwt) with 0.25% MN, and group 
5 (T-2 2.97 mg/kg bwt) with 0.5% MN. The bottom backs of the mice 
were made hairless. T-2 solution in ethanol (5 mg/mL) was produced. 
Using a Hamilton microsyringe, 7 μl of such solution containing 70 μg of 
T-2 (2.97mg/kgbw) was administered. Shaved skin (1 cm2 surface area) 

was applied/administered a solution containing 70 μg of the T-2 toxin 
using a Hamilton microsyringe. The animals were not allowed to move 
until the toxin was absorbed and dried on the appropriate region. Mice 
were observed for the onset of erythema, blisters, and inflammation for 
three days. Following the application of the toxin, animals were given 
eucerin and different doses of MN (0.25% and 0.5%) twice a day until 
complete healing was evident, and at that point, the number of days was 
recorded. To avoid wound infection, the husk bedding in the cages was 
changed daily, and the cages were maintained tidy. The injured animals 
were housed in separate cages to avoid infection. 

2.4. Macroscopic assessments and scoring procedures 

A macroscopic evaluation and scoring system was employed, ac-
cording to Hemmati et al. (2012). The T2 toxin-generated skin damage, 
such as blisters, inflammation, and erythema, was scored from the 1st to 
the 4th day, depending on the severity of the damage. Normal skin on 
the control animal obtained a score of 0. Mice were compared in terms of 
the time skin lesions took to heal fully. 

2.5. Histological studies 

Skin samples from the experimental area were taken using a scalpel 
blade and fine forceps. A 10% formalin solution was used to fix the 
tissues. The tissues were processed, paraffin-embedded, cut into 5 μm 
pieces using a microtome, and histologically stained with hematoxylin 
and eosin. A Cool SNAP® 158 Pro colour digital camera was used to take 
pictures, while a light microscope (Olympus, Japan) was used to 
examine the morphology of the skin tissue. 

2.6. Quantification of reactive oxygen species (ROS) and lipid 
peroxidation in skin tissue 

The 2′, 7′- dichloro-dihydrofluorescein diacetate (DCFH2-DA), a 
fluorescent dye, was used to measure the production of ROS in the skin 
(Wang and Joseph, 1999). The skin samples were homogenized in a 
buffer (250 mM sucrose, 1 mM EDTA, 10 mM Tris HCl buffer, pH 7.2). 
The skin lysates were mixed with 40 μl of 1.25 mM DCFH2-DA and 
incubated for 15 min at 37 ◦C. The fluorescence was measured at 485 nm 
excitation and 525 nm emission using a Hidex plate chameleonTM 144 V 
(Finland). 

The lipid peroxidation was assessed by quantifying Malondialdehyde 
(Buege and Aust, 1978). Skin tissue was homogenized in a lysis buffer 
(250 mM sucrose, 1 mM EDTA, 10 mM Tris HCl buffer, pH 7.2). The 
procedure involves heating skin homogenate in a boiling water bath for 
20 min with TBA reagent. TBA reagent is made up of 20% TCA, 0.5% 
TBA, and 2.5 N HCl. After cooling, the solution was centrifuged at 8000 
rpm for 10 min to remove the precipitate. Absorbance was recorded at 
532 nm, and results were expressed as μmol of malondialdehyde (MDA) 
production per gram of wet tissue. 

2.7. Western blot experimentation 

Western Blotting analytical methodology employing sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed 
to identify the specific proteins of interest. The lysis buffer (250 mM 
sucrose, 1 mM EDTA, 10 mM Tris HCl buffer, pH 7.2) was supplemented 
with a protease inhibitor cocktail and 100 mg skin tissue was homoge-
nized. Afterwards, total protein content was determined using the 
Bradford method (Bradford, 1976). After separation on an SDS-PAGE, 
protein was transferred using an electroblotting device onto a nitrocel-
lulose membrane (Cleaver Scientific Ltd, UK). After transfer, the mem-
branes were coated with primary antibodies of i-NOS (sc-651) and 
tubulin (sc-5286) (Santa Cruz Biotechnology, Santa Cruz, California) 
and incubated for 3 h at room temperature. The membranes were then 
washed with TBST and incubated with rabbit anti-goat, goat anti-mouse, 
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and goat anti-rabbit secondary antibodies (DAKO, Denmark) at 1:10,000 
dilutions for 2 h at room temperature in the dark. The membranes were 
developed using a chemiluminescence detecting method after a second 
round of cleaning (Proteo Qwest1, Sigma). Membranes were exposed to 
X-ray film, and the resulting band intensity was measured. The NIH 
Image J programme was used to determine the intensity of Western blot 

bands (Krupashree et al.,2022). 

2.8. Molecular docking studies 

2.8.1. Ligand preparation 
Ligand was prepared by retrieving the 3D structure of MN from 

Fig. 1. Skin lesion observed at 72 and 120 h after T-2 toxin administration. The hallmarks of a toxin’s effect are erythema, inflammation, and tissue necrosis.  

Fig. 2. Skin lesions of the mice after giving MN and T-2 toxin.  
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PubChem in sdf file format. This was again converted to pdb format 
using Open Babel GUI software for the docking studies (Pires et al., 
2015). 

2.8.2. Protein preparation 
Protein preparation was carried out by retrieving 3D X-ray crystal-

lographic structure from PDB. The target protein selected for the studies 
was i-NOS (PDBID: 2NSI). The structure was cleaned using UCSF 

Fig. 3. (a). Effect of MN on skin inflammation and the time required for complete healing were compared. (b). Effect of MN on skin blisters and the time required for 
complete healing were compared. (c). Effect of MN on skin erythema and the time required for complete healing were compared. *(P < 0.05), and ** (P < 0.01), *** 
(P < 0.001) denotes significant differences between treatment groups (n = 6) with eucerin and no treatment groups. 

Fig. 4. Histology studies: (a–d) control; (e,f) 2.97 mg/kg bwt T-2 toxin 72 h. There was epidermal necrosis associated with dermal inflammation; (g,h) 2.97 mg/kg 
bwt T-2 toxin 120 h. It is possible to see incomplete epidermis granulation tissue formation; (i,j) T-2 toxin+ 50 μ g MN inflammation and incomplete epidermis 
reduced; (k,i) T-2 toxin+ 100 μg MN. A new epidermis layer with granulation tissue is forming. 
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Chimera software by removing water and ligand molecules (if any) from 
the protein structure. The protein active prose was generated using 
CASTp (Jain et al., 2021). 

2.8.3. Molecular docking 
Molecular docking was performed using Autodock Vina embedded 

into PyRx software. BIOVIA Discovery Studio was used to visualize the 
docked ligand and generate the 2D image of the ligand interacting with 
the amino acid residues of the target proteins (Kumar et al., 2021). 

2.9. Statistical analysis 

One-way analysis of variance (ANOVA) was performed to identify 

differences between groups, and the mean (M) and standard error (SE) of 
the mean (S.E.M.) was tested using Tukey’s multiple comparison test 
with a P < 0.05 (95% confidence and significance level) alpha level. 
Graph Pad Prism software, version 9.04, was used for all analysis. 

3. Results and discussion 

3.1. Macroscopic examination 

The T-2 toxin is a powerful active skin irritant that causes systemic 
poisoning and has purportedly been used as a biological weapon (Jan-
ik-Karpinska et al., 2022; Ueno, 1980). Numerous eyewitness and pa-
tient accounts claim that low-flying aircraft poured the yellow, oily 
liquid on the victims after dispersing the aerosolized T-2 mycotoxin, 
known as “yellow rain” (Franz et al., 1997). So, the current study was 
designed to evaluate the ameliorating effect of MN on T-2 toxin-induced 
cutaneous toxicity. Lesions were observed on the skin of the T-2 
toxin-treated groups at 72 and 120 (Fig. 1a-c). The T-2 toxin (2.97 
mg/kg/bw) treated Group developed skin lesions, skin inflammation, 
erythema, and necrosis of skin tissue in contrast to the control group. 
Our findings reveal that topical application of 0.25% and 0.5% MN 
pre-treated groups resulted in no erythema or inflammation and normal 
skin was observed with grown hairs (Fig. 2a-e). The findings support the 
study by Hemmati et al. (2012) on the anti-inflammatory effects of 
quince seed mucilage applied topically against T-2 toxin-induced skin 
irritation. 

3.2. Assessment of the inflammatory damage 

In the T-2 toxin-treated Group, skin irritation was noticed on the 3rd 

day. The inflammation brought on by the T-2 toxin did not impact the 
Group that got eucerine therapy. On the 11th day, the 0.25% MN-treated 
group demonstrated decreased skin inflammation. While at 7th day, the 
Group that got 0.5% MN treatment demonstrated an 80% reduction in 
inflammation (Fig. 3a). Findings on cutaneous toxicity have showed 
edema, abnormal single-nucleus cell accumulation, necrosis, inflam-
mation, increased thickness of the malpighian layer, and cellular infil-
tration (Chaudhary and Rao, 2010; Hemmati et al., 2012). These skin 
wounds mimic those brought on by a poison utilized as a biological 
weapon concerning the yellow rain illness (Smith, 1984). 

3.3. Evaluation of the blister and erythema damage 

Observations were recorded on 3rdday for evaluation of blister 
damage where T-2 toxin-treated groups showed symptoms of blistering. 
Eucerin alone did not affect the T-2 toxin-induced blister. On the other 
hand, on the 7th day, the 0.5% MN administered Group demonstrated an 
80% blister healing effect (Fig. 3b). 

On 3rd day, skin erythema began to develop in the T-2 toxin group, 
and the Group that topically received 0.25% displayed decreased skin 
erythema on the 9th day. The erythema redness entirely disappeared 7 
days after receiving 0.5% MN (Fig. 3c). The phytocompound MN from 
the Mentha pierita plant has a cooling effect by inhibiting the calcium 
stream that goes along the neurons and feels temperature (Kanezaki 
et al., 2021). It does not reduce the temperature of the skin or the body. 
Each nerve ending is employed for temperature sensing since neurons 
operate as the brain’s wiring. TRPM8, a receptor protein that recognizes 
temperature changes, is present in all cold-sensing nerve cells (Wang, 
2021; Yin et al., 2018). According to earlier studies, MN has been used to 
treat inflammation and skin blemishes (Cheng and An, 2022; Liu et al., 
2021; Panahi et al., 2007). MN evidently halted the oxidative stress and 
inflammatory processes triggered by the T-2 toxin in our investigation. 

3.4. Histology studies 

During the first 72 h after the main loss of the epidermis, lymphocyte 

Fig. 5. ROS content in the skin. One-way ANOVA was used to analyze the 
results. ***P < 0.001 versus T-2 Toxin (n = 6). #(P < 0.05) versus control. 

Fig. 6. Malondialdehyde content in the skin. One-way ANOVA was used to 
analyze the results. ****(P < 0.0001) versus T-2 Toxin (n = 6). **(P < 0.05) 
versus control, #(P < 0.05). 
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aggregation and vessel dilatation were seen, signalling the start of 
inflammation. The epidermis demonstrated necrosis after a 120-h T-2 
toxin treatment, while the derma displayed significant edema and 
vascular dilatation. A thin epidermis layer, a little inflammatory 

reaction, and dermal edema were observed in the Group receiving 
0.25% MN. The Group given 0.5% MN showed normal cutaneous 
granulation tissue and epidermis (Fig. 4 a–d) (control), e–f (2.97 mg/kg 
bwt T-2 toxin 72 h), g–h (2.97 mg/kg bwt T-2 toxin 120 h), i–j (T-2 
toxin+ 0.25% MN), and k and I (T-2 toxin+ 0.5% MN). Macroscopic and 
histological studies revealed that the relieving effect was due to MN’s 
ability to reduce inflammation and promote wound healing. Findings 
show that MN is a powerful anti-inflammatory medication. Literature 
suggests that the wound healing process is carried out by modifying the 
immune molecules involved in the inflammation process (Rozza et al., 
2014; Zaia et al., 2016). 

Fig. 7. Western blot analysis of i-NOS expression. The data are presented as means± standard deviations of three independent experiments. ***P < 0.0001 versus the 
T-2 toxin treated group; **P < 0.01 versus the control group. 

Fig. 8. (a) 3D structure of the ligand A Menthol; (b) 3D X-ray crystallographic image of the native unbound iNOS Protein; (c) 3D structures showing the interaction of 
the menthol with the amino acid residues of the iNOS protein; (d) 2D structures showing the interaction of the menthol with the amino acid residues of the 
iNOS protein. 

Table 1 
Binding affinity (kcal/mol) of the ligand with 
corresponding protein.  

Metabolite 
Protein 

Menthol 

2NSI ¡6.8  
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3.5. Protective effect of MN on ROS and lipid peroxidation 

The ROS generations in skin tissue were estimated using a fluores-
cent probe. T-2 toxin treatment on skin homogenates led to a 220% 
increase in fluorescence (P < 0.05), which diminished dose-dependently 
with up to 120% (0.5% MN group) (Fig. 5). Malondialdehyde, a sub-
stance formed when free radicals cause oxidative damage to skin tissue, 
is used to quantify the degree of lipid peroxidation. The T-2 toxin 
increased lipid peroxidation up to 120%, but 0.5% MN treatment 
reduced it up to 70% (P < 0.05) (Fig. 6). The MN exhibits anti-free 
radical properties that reduced the lipid damage (Rozza et al., 2014; 
Joubert and Malan, 2011). 

3.6. Examination of MN against T-2 toxin-induced i-NOS expression 

The expression of numerous inflammatory response-related genes, 
including i-NOS, contributes to skin inflammation. The T-2 toxin-treated 
Group in the current investigation showed i-NOS modulation. Inflam-
mation is caused by T-2’s upregulation of i-NOS expression, which was 
shown in an earlier study by Seeboth et al. (2012). In accordance with 
this result, T-2 also elevated i-NOS expression in our findings. Using 
0.5% of MN with T-2 toxin lowered the expression of i-NOS (Fig. 7a &b). 
According to an in vitro investigation by Liu et al. (2021) reported that 
menthol has a strong inhibitory effect on the expression of i-NOS in 
mammary epithelial cells. Similar trends were seen in the current in vivo 
study ie, inhibitory action of menthol against T-2 induced i-NOS 
expression. The i-NOS is elevated in a variety of clinical disorders linked 

to inflammation, and it appears that blocking NOS is a valuable strategy 
for reducing tissue damage brought on by the presence of reactive ni-
trogen intermediates (Robertson et al., 1996). Our results align with 
those of the prior work by Liu et al. (2021). 

3.7. Molecular docking studies 

The 3D structure of MN retrieved from PubChem is represented in 
Fig. 8a and the native, unbound, 3D X-ray crystallographic structure of i- 
NOS protein is shown in Fig. 8b Molecular docking studies allow 
explaining the nature of the interactions between the ligand and the 
amino acid residues of the protein within its active prose. Table 1 dis-
plays the binding affinity (kcal/mol) of the MN ligand with the i-NOS 
target protein (PDBID: 2NSI). Figure (8c&d) depict the interaction in 3D 
and the matching 2D image, respectively. 

The stability of the docked molecule depends on the nature of the 
interaction made with the amino acid residues of the proteins. The 
conventional Hydrogen bond, Pi, Sigma bonds, van der Waal are some of 
the bonds that contribute to the complex’s stability. It is possible to infer 
that the complex established is stable based on the binding affinity and 
type of contact that MN created with i-NOS. MN reduced inflammation 
brought on by the T-2 toxin, by interacting with i-NOS hydrogen bonds. 
The reduction of T-2 toxin induced inflammation in mice skin by upre-
gulation of i-NOS and amelioration activity by MN raises the possibility 
of new therapeutic avenues for disorders linked to cutaneous inflam-
matory processes. Our results are consistent with prior studies by Sousa 
et al., 2021; Loza-Mejía and Salazar, 2015; and Baig et al., 2021, 

Fig. 9. Schematic diagram of T-2 toxin and molecular docking studies.  
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indicating the anti-inflammatory effect supported by the molecular 
docking analysis by evaluating the phytochemicals binding efficacy and 
their inhibitory action against inflammatory genes in in vivo models 
(i-NOS, TNF-α, IL-6, cyclooxygenase-2). Menthol protective efficacy 
against T-2 toxin induced dermal toxicity is illustrated in Fig. 9. 

4. Conclusion 

Owing to its capacity to release as aerosols, the T-2 toxin is recog-
nized as a skin irritant and is considered to be more harmful than the 
other trichothecenes. Herbal sources of polyphenols and flavonoids, 
which are abundant in antioxidants, are well known for their ability to 
reduce inflammation. Due to its ability to reduce inflammation and cool 
the skin, MN is used in the pharmaceutical and cosmetic sectors. 
Menthol was observed, and its capacity to lessen skin irritation brought 
on by T-2 toxins was investigated on the topical application in a mouse 
model. Research at the cellular and molecular levels is further required 
to confirm the additional validation of menthol. 
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